sábado, 12 de mayo de 2012

Números Arábigos





Números arábigos (Wikipedia)

Los números arábigos, también llamados números indoarábigos son los símbolos más utilizados para representar números. Se les llama "arábigos" porque los árabes los introdujeron en Europa aunque, en realidad, su invención surgió en la India. El mundo le debe a la cultura india el invento trascendental del sistema de numeración posicional, así como el descubrimiento del 0, llamado śūnya (shuunia) o bindu en lengua sánscrita, aunque los mayas también conocieron el 0. Los matemáticos persas de la India adoptaron el sistema, de quienes lo tomaron los árabes. Para el momento en que se empezaron a usar en el norte de África, ya tenían su forma actual, de allí fueron adoptados en Europa en la Edad Media. Su uso aumentó en todo el mundo debido a la colonización y comercio europeos.
El sistema "arábigo" se ha representado (y se representa) utilizando muchos conjuntos de glifos diferentes. Estos glifos pueden dividirse en dos grandes familias, los numerales arábigos occidentales y los orientales. Los orientales, que se desarrollaron en lo que actualmente se corresponde a Irak, se representan en la tabla que viene a continuación como Arábigo-Índico. El Arábigo-Índico oriental es una variedad de los glifos arábigo-índicos. Los numerales arábigos occidentales, desarrollados en Al-Ándalus y el Magreb se muestran en la tabla como Europeo
Europeo 0 1 2 3 4 5 6 7 8 9
Arábigo-Índico ٠ ١ ٢ ٣ ٤ ٥ ٦ ٧ ٨ ٩
Arábigo-Índico Oriental
(Persa y Urdu)
۰ ۱ ۲ ۳ ۴ ۵ ۶ ۷ ۸ ۹
Devanagari
(Hindi)
Tamil
En Japón, los números "arábigos" y el alfabeto latino forman parte del sistema de escritura rōmaji. Así, si un número está escrito con glifos "arábigos", en Japón dirán que “está escrito en rōmaji” en contraposición a la numeración japonesa.

Historia

El sistema de numeración arábigo se considera uno de los avances más significativos de las matemáticas. La mayoría de los historiadores coinciden en afirmar que tuvo su origen en la India (los árabes se refieren a este sistema de numeración como “Números Indios”, أرقام هندية, arqam hindiyyah), y se expandió por el mundo islámico y de ahí, vía al-Andalus, al resto de Europa.
Se especula que el origen del sistema posicional base 10 utilizado en la India tuviera sus orígenes en China. El sistema chino Hua Ma (ver Numeración china) es también posicional y de base 10 y pudo haber servido de inspiración para el sistema que surgió en la India. Esta hipótesis cobra fuerza por el hecho de que entre los siglos V y VIII (periodo durante el cual se desarrolló el sistema numérico indio) coincidió con una gran afluencia de peregrinos budistas entre China y la India. Lo que es cierto es que en la época de Bhaskara I (Siglo VII) en la India se utilizaba un sistema numeral posicional base 10 con 9 glifos, y se conocía el concepto del cero, representado por un punto.
Este sistema de numeración llegó a Oriente Medio hacia el año 670. Matemáticos musulmanes del actual Irak, como al-Jwarizmi, ya estaban familiarizados con la numeración babilónica, que utilizaba el cero entre dígitos distintos de cero (aunque no tras dígitos distintos de cero), así que el nuevo sistema no tuvo un buen recibimiento. En el siglo X los matemáticos árabes incluyeron en su sistema de numeración las fracciones. al-Jwarizmi escribió el libro "Acerca de los cálculos con los números de la India" cerca de el año 825 y Al-Kindi escribió "El uso de los números de la India" en cuatro volúmenes. Su trabajo fue muy importante en la difusión del sistema de la India en el Oriente Medio y en el occidente.1
Las primeras menciones de estos numerales en la literatura occidental se encuentran el el Codex Virgilianus del año 976.2 A partir de 980 Gerberto de Aurillac (más tarde papa con el nombre de Silvestre II, hizo uso de su oficio papal para difundir el conocimiento del sistema en Europa. Fibonacci, un matemático italiano que había estudiado en Bugía (en la actual Argelia), contribuyó a la difusión por Europa del sistema arábigo con su libro Liber Abaci, publicado en 1202. Entre los primeros países se hallaba Gran Bretaña, teniéndose escritos como una en lino de la iglesia de Braye de 1448 en Berkshire y una en Escocia de 1470 en la tumba de Eral de Huntly, en.3 En Europa central, el rey de Hungría Ladislao el Póstumo, comenzó a utilizar los números arabigos, teniéndose registro de un documento real de 1456.4
Sin embargo, no fue sino hasta la invención de la imprenta en 1450, cuando este sistema de numeración comenzó a utilizarse de forma generalizada en Europa; para el Siglo XV son ya utilizados ampliamente; por su parte, los números arábigos reemplazaron a los cirílicos en Rusia cerca de 1700, cuando fueron introducidos por el zar Pedro I de Rusia.
Apices du moyen-âge
illustration des apices du moyen-âge
http://www.encyclopedie-universelle.com/images/Image346.gif
Each Apex received an individual name: 1 Igin, 2 Andras, 3 Ormis, 4 Arbas, 5 Quimas, 6 Caltis, 7 Zenis, 8 Temenisa, 9 Celentis. The etymology remains unclear, though some names were clearly Arab numbers. The Arabic figures reported by Gerber were reproduced almost everywhere with the greatest fantasy, as evidenced by various examples compared to the model's initial figure 4 (form imported by the Arabs at the end of the tenth century). Chaque apex reçut un nom individuel: 1 Igin, 2 Andras, 3 Ormis, 4 Arbas, 5 Quimas, 6 Caltis, 7 Zenis, 8 Temenisa, 9 Celentis, dont l'étymologie reste obscure, même si quelques noms de nombres sont clairement arabes. Les chiffres arabes rapportés par Gerber furent reproduits un peu partout avec la plus grande fantaisie, comme le montre divers exemples comparés au modèle initial du chiffre 4 (forme importée par les arabes dès la fin du Xe siècle).
http://www.encyclopedie-universelle.com/abaque-calcul7-moyen-age-occidental.html



http://www.encyclopedie-universelle.com/images/Image347.gif
illustation de l'abaque de Gerbert


EuropeanFormOfArabianDigits
Early european variants of the arabian digits 1798 
Jean-Étienne Montucla, Histoire des Mathématiques, 1758 (1798 second edition), Tome 1, Planche XI, In the above mentioned book, Montucla describes the various digits in detail. Here is a summary of the paragraph on page 375 to 381 (the first part is the part written in the image):


Curiosamente, hasta tiempos relativamente recientes, en el mundo musulmán solamente los matemáticos utilizaban el sistema de numeración arábigo. Los científicos utilizaban el sistema babilónico y los comerciantes los sistemas griego y hebreo.

Numerosarabigosporangulos
Números arabigos por ángulos (sugerencia)

Números arábigos  

          Subido por  el 16/02/2009

Se dice que los símbolos que representan los números arábigos se deben al conteo de los ángulos internos que se encuentran en los dibujos primitivos..



Notas

  1. The MacTutor History of Mathematics archive
  2. Mathorigins.com
  3. Elgin G.F. Hill, The Development of Arabic Numerals in Europe
  4. Erdélyi: Magyar művelődéstörténet 1-2. kötet. Kolozsvár, 1913, 1918
  5. Cajori, Florian. ([1928] 2007). "A History of Mathematical Notations", in Vol I: Notations Mathematics, Myers Press. pp. 64-66 ISBN 1-40670-920-9.
-------------------------------------------------------------------

Indian numerals


Ancient Indian Mathematics index History Topics Index
Version for printing

The ingenious method of expressing every possible number using a set of ten symbols (each symbol having a place value and an absolute value) emerged in India. The idea seems so simple nowadays that its significance and profound importance is no longer appreciated. Its simplicity lies in the way it facilitated calculation and placed arithmetic foremost amongst useful inventions. the importance of this invention is more readily appreciated when one considers that it was beyond the two greatest men of Antiquity, Archimedes and Apollonius.
The purpose of this article is to attempt the difficult task of trying to describe how the Indians developed this ingenious system. We will examine two different aspects of the Indian number systems in this article. First we will examine the way that the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 evolved into the form which we recognise today. Of course it is important to realise that there is still no standard way of writing these numerals. The different fonts on this computer can produce many forms of these numerals which, although recognisable, differ markedly from each other. Many hand-written versions are even hard to recognise.
The second aspect of the Indian number system which we want to investigate here is the place value system which, as Laplace comments in the quote which we gave at the beginning of this article, seems "so simple that its significance and profound importance is no longer appreciated." We should also note the fact, which is important to both aspects, that the Indian number systems are almost exclusively base 10, as opposed to the Babylonian base 60 systems.
Beginning with the numerals themselves, we certainly know that today's symbols took on forms close to that which they presently have in Europe in the 15th century. It was the advent of printing which motivated the standardisation of the symbols. However we must not forget that many countries use symbols today which are quite different from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and unless one learns these symbols they are totally unrecognisable as for example the Greek alphabet is to someone unfamiliar with it.
One of the important sources of information which we have about Indian numerals comes from al-Biruni. During the 1020s al-Biruni made several visits to India. Before he went there al-Biruni already knew of Indian astronomy and mathematics from Arabic translations of some Sanskrit texts. In India he made a detailed study of Hindu philosophy and he also studied several branches of Indian science and mathematics. Al-Biruni wrote 27 works on India and on different areas of the Indian sciences. In particular his account of Indian astronomy and mathematics is a valuable contribution to the study of the history of Indian science. Referring to the Indian numerals in a famous book written about 1030 he wrote:-
Whilst we use letters for calculation according to their numerical value, the Indians do not use letters at all for arithmetic. And just as the shape of the letters that they use for writing is different in different regions of their country, so the numerical symbols vary.
It is reasonable to ask where the various symbols for numerals which al-Biruni saw originated. Historians trace them all back to the Brahmi numerals which came into being around the middle of the third century BC. Now these Brahmi numerals were not just symbols for the numbers between 1 and 9. The situation is much more complicated for it was not a place-value system so there were symbols for many more numbers. Also there were no special symbols for 2 and 3, both numbers being constructed from the symbol for 1.

Here is the Brahmi one, two, three.

There were separate Brahmi symbols for 4, 5, 6, 7, 8, 9 but there were also symbols for 10, 100, 1000, ... as well as 20, 30, 40, ... , 90 and 200, 300, 400, ..., 900.
The Brahmi numerals have been found in inscriptions in caves and on coins in regions near Poona, Bombay, and Uttar Pradesh. Dating these numerals tells us that they were in use over quite a long time span up to the 4th century AD. Of course different inscriptions differ somewhat in the style of the symbols.

Here is one style of the Brahmi numerals.

We should now look both forward and backward from the appearance of the Brahmi numerals. Moving forward leads to many different forms of numerals but we shall choose to examine only the path which has led to our present day symbols. First, however, we look at a number of different theories concerning the origin of the Brahmi numerals.
There is no problem in understanding the symbols for 1, 2, and 3. However the symbols for 4, ... , 9 appear to us to have no obvious link to the numbers they represent. There have been quite a number of theories put forward by historians over many years as to the origin of these numerals. In [1] Ifrah lists a number of the hypotheses which have been put forward.

  1. The Brahmi numerals came from the Indus valley culture of around 2000 BC.
  2. The Brahmi numerals came from Aramaean numerals.
  3. The Brahmi numerals came from the Karoshthi alphabet.
  4. The Brahmi numerals came from the Brahmi alphabet.
  5. The Brahmi numerals came from an earlier alphabetic numeral system, possibly due to Panini.
  6. The Brahmi numerals came from Egypt.

Basically these hypotheses are of two types. One is that the numerals came from an alphabet in a similar way to the Greek numerals which were the initial letters of the names of the numbers. The second type of hypothesis is that they derive from an earlier number system of the same broad type as Roman numerals. For example the Aramaean numerals of hypothesis 2 are based on I (one) and X (four):
I, II, III, X, IX, IIX, IIIX, XX.
Ifrah examines each of the six hypotheses in turn and rejects them, although one would have to say that in some cases it is more due to lack of positive evidence rather than to negative evidence.
Ifrah proposes a theory of his own in [1], namely that:-
... the first nine Brahmi numerals constituted the vestiges of an old indigenous numerical notation, where the nine numerals were represented by the corresponding number of vertical lines ... To enable the numerals to be written rapidly, in order to save time, these groups of lines evolved in much the same manner as those of old Egyptian Pharonic numerals. Taking into account the kind of material that was written on in India over the centuries (tree bark or palm leaves) and the limitations of the tools used for writing (calamus or brush), the shape of the numerals became more and more complicated with the numerous ligatures, until the numerals no longer bore any resemblance to the original prototypes.
It is a nice theory, and indeed could be true, but there seems to be absolutely no positive evidence in its favour. The idea is that they evolved from:

One might hope for evidence such as discovering numerals somewhere on this evolutionary path. However, it would appear that we will never find convincing proof for the origin of the Brahmi numerals.
If we examine the route which led from the Brahmi numerals to our present symbols (and ignore the many other systems which evolved from the Brahmi numerals) then we next come to the Gupta symbols. The Gupta period is that during which the Gupta dynasty ruled over the Magadha state in northeastern India, and this was from the early 4th century AD to the late 6th century AD. The Gupta numerals developed from the Brahmi numerals and were spread over large areas by the Gupta empire as they conquered territory.


The Gupta numerals evolved into the Nagari numerals, sometimes called the Devanagari numerals. This form evolved from the Gupta numerals beginning around the 7th century AD and continued to develop from the 11th century onward. The name literally means the "writing of the gods" and it was the considered the most beautiful of all the forms which evolved. For example al-Biruni writes:-
What we [the Arabs] use for numerals is a selection of the best and most regular figures in India.


These "most regular figures" which al-Biruni refers to are the Nagari numerals which had, by his time, been transmitted into the Arab world. The way in which the Indian numerals were spread to the rest of the world between the 7th to the 16th centuries in examined in detail in [7]. In this paper, however, Gupta claims that Indian numerals had reached Southern Europe by the end of the 5th century but his argument is based on the Geometry of Boethius which is now known to be a forgery dating from the first half of the 11th century. It would appear extremely unlikely that the Indian numerals reach Europe as early as Gupta suggests.
We now turn to the second aspect of the Indian number system which we want to examine in this article, namely the fact that it was a place-value system with the numerals standing for different values depending on their position relative to the other numerals. Although our place-value system is a direct descendant of the Indian system, we should note straight away that the Indians were not the first to develop such a system. The Babylonians had a place-value system as early as the 19th century BC but the Babylonian systems were to base 60. The Indians were the first to develop a base 10 positional system and, considering the date of the Babylonian system, it came very late indeed.
The oldest dated Indian document which contains a number written in the place-value form used today is a legal document dated 346 in the Chhedi calendar which translates to a date in our calendar of 594 AD. This document is a donation charter of Dadda III of Sankheda in the Bharukachcha region. The only problem with it is that some historians claim that the date has been added as a later forgery. Although it was not unusual for such charters to be modified at a later date so that the property to which they referred could be claimed by someone who was not the rightful owner, there seems no conceivable reason to forge the date on this document. Therefore, despite the doubts, we can be fairly sure that this document provides evidence that a place-value system was in use in India by the end of the 6th century.
Many other charters have been found which are dated and use of the place-value system for either the date or some other numbers within the text. These include:

  1. a donation charter of Dhiniki dated 794 in the Vikrama calendar which translates to a date in our calendar of 737 AD.
  2. an inscription of Devendravarman dated 675 in the Shaka calendar which translates to a date in our calendar of 753 AD.
  3. a donation charter of Danidurga dated 675 in the Shaka calendar which translates to a date in our calendar of 737 AD.
  4. a donation charter of Shankaragana dated 715 in the Shaka calendar which translates to a date in our calendar of 793 AD.
  5. a donation charter of Nagbhata dated 872 in the Vikrama calendar which translates to a date in our calendar of 815 AD.
  6. an inscription of Bauka dated 894 in the Vikrama calendar which translates to a date in our calendar of 837 AD.

All of these are claimed to be forgeries by some historians but some, or all, may well be genuine.
The first inscription which is dated and is not disputed is the inscription at Gwalior dated 933 in the Vikrama calendar which translates to a date in our calendar of 876 AD. Further details of this inscription is given in the article on zero.
There is indirect evidence that the Indians developed a positional number system as early as the first century AD. The evidence is found from inscriptions which, although not in India, have been found in countries which were assimilating Indian culture. Another source is the Bakhshali manuscript which contains numbers written in place-value notation. The problem here is the dating of this manuscript, a topic which is examined in detail in our article on the Bakhshali manuscript.
We are left, of course, with asking the question of why the Indians developed such an ingenious number system when the ancient Greeks, for example, did not. A number of theories have been put forward concerning this question. Some historians believe that the Babylonian base 60 place-value system was transmitted to the Indians via the Greeks. We have commented in the article on zero about Greek astronomers using the Babylonian base 60 place-value system with a symbol o similar to our zero. The theory here is that these ideas were transmitted to the Indians who then combined this with their own base 10 number systems which had existed in India for a very long time.
A second hypothesis is that the idea for place-value in Indian number systems came from the Chinese. In particular the Chinese had pseudo-positional number rods which, it is claimed by some, became the basis of the Indian positional system. This view is put forward by, for example, Lay Yong Lam; see for example [8]. Lam argues that the Chinese system already contained what he calls the:-
... three essential features of our numeral notation system: (i) nine signs and the concept of zero, (ii) a place value system and (iii) a decimal base.
A third hypothesis is put forward by Joseph in [2]. His idea is that the place-value in Indian number systems is something which was developed entirely by the Indians. He has an interesting theory as to why the Indians might be pushed into such an idea. The reason, Joseph believes, is due to the Indian fascination with large numbers. Freudenthal is another historian of mathematics who supports the theory that the idea came entirely from within India.
To see clearly this early Indian fascination with large numbers, we can take a look at the Lalitavistara which is an account of the life of Gautama Buddha. It is hard to date this work since it underwent continuous development over a long period but dating it to around the first or second century AD is reasonable. In Lalitavistara Gautama, when he is a young man, is examined on mathematics. He is asked to name all the numerical ranks beyond a koti which is 107. He lists the powers of 10 up to 1053. Taking this as a first level he then carries on to a second level and gets eventually to 10421. Gautama's examiner says:-
You, not I, are the master mathematician.
It is stories such as this, and many similar ones, which convince Joseph that the fascination of the Indians with large numbers must have driven them to invent a system in which such numbers are easily expressed, namely a place-valued notation. He writes in [2]:-
The early use of such large numbers eventually led to the adoption of a series of names for successive powers of ten. The importance of these number names cannot be exaggerated. The word-numeral system, later replaced by an alphabetic notation, was the logical outcome of proceeding by multiples of ten. ... The decimal place-value system developed when a decimal scale came to be associated with the value of the places of the numbers arranged left to right or right to left. and this was precisely what happened in India ...
However, the same story in Lalitavistara convinces Kaplan (see [3]) that the Indians' ideas of numbers came from the Greeks, for to him the story is an Indian version of Archimedes' Sand-reckoner. All that we know is that the place-value system of the Indians, however it arose, was transmitted to the Arabs and later into Europe to have, in the words of Laplace, profound importance on the development of mathematics.
References (11 books/articles)
Astroseti (A Spanish translation of this article)  http://www.astroseti.org/articulo/4502/

--------------------------------------------
This site was originally prepared as a guide for my
independent study of Ancient Egyptian Mathematical Papyri. Because I
was not formally trained as an Egyptologist, at first I did not know
where to look. Many papyri and other artifacts have been published, but few have a
mathematical nature or even significant math content.

This website includes brief notes and citations of all the published
papyri, inscriptions and ostraca et cetera from AE (and elsewhere) that I
have ever heard of. I gather more information and images regularly.
I note the nature of
each item, and maintain an archive of all viewed images for further study.

Persons interested in AE (and Babylonian; Greek; Mayan…) artifacts may find
below citations for numerous source and analysis texts. My emphasis
is on AE arithmetic, yet I have included extensive studies of many other
varied topics that either interest me greatly, or seem relatively important.

I hope you find this helpful.
Sincerely,
Bruce Friedman
Faster versions of my old [AOL] websites are available
under the keyword "BRUCE"
at the link to the image grid:

---------------------------------

 Cajori, Florian. ([1928] 2007). "A History of Mathematical Notations", in Vol I: Notations Mathematics, Myers Press. pp. 64-66 ISBN 1-40670-920-9
http://books.google.es/books?id=7juWmvQSTvwC&lpg=PR1&hl=es&pg=PA25#v=onepage&q&f=false







10 Little Numbers

hace 2 años 41979287 reproducciones  Subido por el 23/12/2009

A numbers song to the ten little tune. It's designed to help children learn the names and the spelling of numbers.
Arranged and performed by A.J. Jenkins. Copyright 2009 KidsTV123: All rights reserved.
For MP3s, worksheets and much more:
http://www.KidsTV123.com



The Big Numbers Song

hace 1 año 7112446 reproducciones  Subido por el 10/05/2011


It's a numbers song for children and adults. Count from 0 to 100 and from a hundred to a trillion.
This song was written and performed by A.J. Jenkins. Video by KidsTV123.
Copyright 2011: All rights reserved.
For free MP3s, worksheets and much more:
http://www.kidstv123.com

Kids songs song for children







No hay comentarios:

Publicar un comentario